On the Euler-Lagrange equation for functionals of the calculus of variations without upper growth conditions

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

11 Citazioni (Scopus)

Abstract

For a class of functionals of the Calculus of variations, we prove that each minimum of the functional satisfies the associated Euler-Lagrange equation. The integrand is supposed to be convex, but no upper growth condition is imposed.
Lingua originaleEnglish
pagine (da-a)2857-2870
Numero di pagine14
RivistaSIAM Journal on Control and Optimization
Volume48
DOI
Stato di pubblicazionePubblicato - 2009

Keywords

  • Calcolo delle variazioni
  • Calculus of variations
  • Differential equations
  • Equazioni differenziali

Fingerprint

Entra nei temi di ricerca di 'On the Euler-Lagrange equation for functionals of the calculus of variations without upper growth conditions'. Insieme formano una fingerprint unica.

Cita questo