Abstract

A selection theorem concerning support points of convex sets in a Banach space is proved. As a corollary we obtain the following result. Denote by BCC (X) the metric space of all nonempty bounded closed convex sets in a Banach space X. Then there exists a continuous mapping S from BCC (X) to X such that S(K) is a support point of K for each K in BCC (X). Moreover, it is possible to prescribe the values of S on a closed discrete subset of BCC(X).
Lingua originaleEnglish
pagine (da-a)369-378
Numero di pagine10
RivistaArchiv der Mathematik
Volume93
DOI
Stato di pubblicazionePubblicato - 2009

Keywords

  • Bishop-Phelps theorem
  • Convex set
  • Mathematics (all)
  • Selection
  • Support functional
  • Support point

Fingerprint

Entra nei temi di ricerca di 'On support points and continuous extensions'. Insieme formano una fingerprint unica.

Cita questo