On proper minimality in set optimization

L. Huerga, Enrico Miglierina, E. Molho, V. Novo*

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo

Abstract

The aim of this paper is to extend some notions of proper minimality from vector optimization to set optimization. In particular, we focus our attention on the concepts of Henig and Geoffrion proper minimality, which are well-known in vector optimization. We introduce a generalization of both of them in set optimization with finite dimensional spaces, by considering also a special class of polyhedral ordering cone. In this framework, we prove that these two notions are equivalent, as it happens in the vector optimization context, where this property is well-known. Then, we study a characterization of these proper minimal points through nonlinear scalarization, without considering convexity hypotheses.
Lingua originaleInglese
pagine (da-a)513-528
Numero di pagine16
RivistaOptimization Letters
Volume18
DOI
Stato di pubblicazionePubblicato - 2023

Keywords

  • Geoffrion proper minimality
  • Henig proper minimality
  • Nonlinear scalarization
  • Set optimization

Fingerprint

Entra nei temi di ricerca di 'On proper minimality in set optimization'. Insieme formano una fingerprint unica.

Cita questo