Abstract
We determine all the possible pointwise k-symmetric spaces of negative constant curvature.
In general, such spaces are not k-symmetric.
In fact we show that, for all n>= 3, k not 2, H^n is not k-symmetric, i.e., for any set of selected k-symmetries, one for each point of H^n, the regularity condition does not hold.
Lingua originale | English |
---|---|
pagine (da-a) | 639-642 |
Numero di pagine | 4 |
Rivista | Differential Geometry and its Applications |
DOI | |
Stato di pubblicazione | Pubblicato - 2013 |
Keywords
- hyperbolic space
- k-symmetric space