Abstract
We provide a set of numerical simulations for the spatial segregation limit of
two diffusive Lotka-Volterra models in presence of strong competition and inhomogeneous
Dirichlet boundary conditions. We consider the classical non-variational quadratic coupling
as well as a cubic coupling which makes the problem variational. For both cases we
perform a numerical investigation of the limiting density distributions, the front tracking,
the segregation rate and the dependence of the shape of the segregated regions upon the
size of diffusion coefficients. This approach can be easily extended to the multi-species
multi-dimensional case.
Lingua originale | English |
---|---|
pagine (da-a) | 83-104 |
Numero di pagine | 22 |
Rivista | Advances in Mathematical Sciences and Applications |
Volume | 18 |
Stato di pubblicazione | Pubblicato - 2008 |
Keywords
- numerical computations