For a simple and connected graph, several lower and upper bounds of graph invariants expressed in terms of the eigenvalues of the normalized Laplacian Matrix have been proposed in literature. In this paper, through a unied approach based on majorization techniques, we provide some novel inequalities depending on additional information on the localization of the eigenvalues of the normalized Laplacian matrix. Some numerical examples show how sharper results can be obtained with respect to those existing in literature.
Lingua originaleEnglish
pagine (da-a)673-690
Numero di pagine18
Stato di pubblicazionePubblicato - 2017


  • graphs
  • majorization
  • normalized Laplacian Estrada index
  • normalized Laplacian energy

Fingerprint Entra nei temi di ricerca di 'Novel Bounds for the Normalized Laplacian Estrada Index and Normalized Laplacian Energy'. Insieme formano una fingerprint unica.

Cita questo