Normalized solutions to the Chern–Simons–Schrödinger system: the supercritical case

L. Shen, Marco Squassina*

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo

Abstract

We are concerned with the existence of normalized solutions for a class of generalized Chern–Simons–Schrödinger type problems with supercritical exponential growth (Formula presented.) where a≠0, λ∈R is known as the Lagrange multiplier and f∈C1(R) denotes the nonlinearity that fulfills the supercritical exponential growth in the Trudinger–Moser sense at infinity. Under suitable assumptions, combining the constrained minimization approach together with the homotopy stable family and elliptic regular theory, we obtain that the problem has at least a ground state solution.
Lingua originaleInglese
pagine (da-a)1-50
Numero di pagine50
RivistaJournal of Fixed Point Theory and Applications
Volume27
Numero di pubblicazione2
DOI
Stato di pubblicazionePubblicato - 2025

All Science Journal Classification (ASJC) codes

  • Modellazione e Simulazione
  • Geometria e Topologia
  • Matematica Applicata

Keywords

  • Chern–Simons–Schrödinger system
  • Normalized solutions
  • Trudinger–Moser inequality
  • constrained minimization approach
  • ground state solution
  • variational method

Fingerprint

Entra nei temi di ricerca di 'Normalized solutions to the Chern–Simons–Schrödinger system: the supercritical case'. Insieme formano una fingerprint unica.

Cita questo