Normalized solutions for a fractional Schrödinger–Poisson system with critical growth

Xiaoming He, Yuxi Meng, Marco Squassina

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

In this paper, we study the fractional critical Schrödinger–Poisson system (Formula presented.) having prescribed mass (Formula presented.) where s,t∈(0,1) satisfy 2s+2t>3,q∈(2,2s∗),a>0 and λ,μ>0 parameters and α∈R is an undetermined parameter. For this problem, under the L2-subcritical perturbation μ|u|q-2u,q∈(2,2+4s3), we derive the existence of multiple normalized solutions by means of the truncation technique, concentration-compactness principle and the genus theory. In the L2-supercritical perturbation μ|u|q-2u,q∈(2+4s3,2s∗), we prove two different results of normalized solutions when parameters λ,μ satisfy different assumptions, by applying the constrained variational methods and the mountain pass theorem. Our results extend and improve some previous ones of Zhang et al. (Adv Nonlinear Stud 16:15–30, 2016); and of Teng (J Differ Equ 261:3061–3106, 2016), since we are concerned with normalized solutions.
Lingua originaleEnglish
pagine (da-a)1-48
Numero di pagine48
RivistaCalculus of Variations and Partial Differential Equations
Volume63
DOI
Stato di pubblicazionePubblicato - 2024

Keywords

  • 35B65
  • 35J62
  • 35J50

Fingerprint

Entra nei temi di ricerca di 'Normalized solutions for a fractional Schrödinger–Poisson system with critical growth'. Insieme formano una fingerprint unica.

Cita questo