TY - JOUR
T1 - Normalized ground states for NLS equations with mass critical nonlinearities
AU - Cingolani, Silvia
AU - Gallo, Marco
AU - Ikoma, Norihisa
AU - Tanaka, Kazunaga
PY - 2025
Y1 - 2025
N2 - We study normalized solutions $(\mu,u)\in \mathbb{R} \times H^1(\mathbb{R}^N)$ to %the \r\nnonlinear Schrödinger equations\r\n \[ -\Delta u + \mu u = g(u)\quad \hbox{in}\ \mathbb{R}^N, \qquad\r\n \frac{1}{2}\int_{\mathbb{R}^N} u^2 dx = m,\r\n \]\r\nwhere $N\geq 2$ and the mass $m>0$ is given. Here, $g$ has an $L^2$-critical growth, both at the origin and at infinity, that is, $g(s)\sim |s|^{p-1}s$ as $s\sim 0$ and $s\sim\infty$, where $p=1+\frac{4}{N}$.\r\nWe continue the analysis started in \cite{CGIT24}, where we found two (possibly distinct) minimax values $\underline{b} \leq 0 \leq \overline{b}$ of the Lagrangian functional.\r\nIn this paper, we furnish explicit examples of $g$ satisfying $\underline{b}<0<\overline{b}$, $\underline{b}=0<\overline{b}$, and $\underline{b}<0=\overline{b}$; notice that $\underline{b}=0=\overline{b}$ in the power case $g(t)=|t|^{p-1}t$. Moreover, we deal with the existence and non-existence of a solution with minimal energy.\r\nFinally, we discuss the assumptions required on $g$ to obtain the existence of a positive solution for perturbations of $g$.
AB - We study normalized solutions $(\mu,u)\in \mathbb{R} \times H^1(\mathbb{R}^N)$ to %the \r\nnonlinear Schrödinger equations\r\n \[ -\Delta u + \mu u = g(u)\quad \hbox{in}\ \mathbb{R}^N, \qquad\r\n \frac{1}{2}\int_{\mathbb{R}^N} u^2 dx = m,\r\n \]\r\nwhere $N\geq 2$ and the mass $m>0$ is given. Here, $g$ has an $L^2$-critical growth, both at the origin and at infinity, that is, $g(s)\sim |s|^{p-1}s$ as $s\sim 0$ and $s\sim\infty$, where $p=1+\frac{4}{N}$.\r\nWe continue the analysis started in \cite{CGIT24}, where we found two (possibly distinct) minimax values $\underline{b} \leq 0 \leq \overline{b}$ of the Lagrangian functional.\r\nIn this paper, we furnish explicit examples of $g$ satisfying $\underline{b}<0<\overline{b}$, $\underline{b}=0<\overline{b}$, and $\underline{b}<0=\overline{b}$; notice that $\underline{b}=0=\overline{b}$ in the power case $g(t)=|t|^{p-1}t$. Moreover, we deal with the existence and non-existence of a solution with minimal energy.\r\nFinally, we discuss the assumptions required on $g$ to obtain the existence of a positive solution for perturbations of $g$.
KW - Nonlinear Schrödinger equations
KW - Nonlinear elliptic PDEs
KW - Normalized solutions
KW - Prescribed mass problem
KW - L2-critical exponent
KW - Least energy
KW - L2-minimum
KW - Lagrangian approach
KW - Stability and perturbation properties
KW - Nonlinear Schrödinger equations
KW - Nonlinear elliptic PDEs
KW - Normalized solutions
KW - Prescribed mass problem
KW - L2-critical exponent
KW - Least energy
KW - L2-minimum
KW - Lagrangian approach
KW - Stability and perturbation properties
UR - https://publicatt.unicatt.it/handle/10807/324308
U2 - 10.3934/dcds.2025171
DO - 10.3934/dcds.2025171
M3 - Article
SN - 1078-0947
VL - 2025
SP - 1
EP - 31
JO - Discrete and Continuous Dynamical Systems
JF - Discrete and Continuous Dynamical Systems
IS - N/A
ER -