TY - JOUR
T1 - Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting
AU - Degiovanni, Marco
AU - Lancelotti, Sergio
AU - Perera, Kanishka
PY - 2010
Y1 - 2010
N2 - We consider a quasilinear equation, involving the p-Laplace operator, with a p-superlinear nonlinearity.\r\nWe prove the existence of a nontrivial solution, also when there is no mountain pass geometry, without imposing a global sign condition. Techniques of Morse theory are employed.
AB - We consider a quasilinear equation, involving the p-Laplace operator, with a p-superlinear nonlinearity.\r\nWe prove the existence of a nontrivial solution, also when there is no mountain pass geometry, without imposing a global sign condition. Techniques of Morse theory are employed.
KW - Critical point theory
KW - Differential equations
KW - Equazioni differenziali
KW - Teoria dei punti critici
KW - Critical point theory
KW - Differential equations
KW - Equazioni differenziali
KW - Teoria dei punti critici
UR - https://publicatt.unicatt.it/handle/10807/2974
UR - https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=77954190518&origin=inward
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77954190518&origin=inward
U2 - 10.1142/S0219199710003890
DO - 10.1142/S0219199710003890
M3 - Article
SN - 0219-1997
VL - 12
SP - 475
EP - 486
JO - Communications in Contemporary Mathematics
JF - Communications in Contemporary Mathematics
IS - 3
ER -