Nonparametric inference for functional-on-scalar linear models applied to knee kinematic hop data after injury of the anterior cruciate ligament

Alessia Pini, Konrad Abramowicz, Charlotte K. Häger, Lina Schelin, Sara Sjöstedt De Luna, Simone Vantini

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

8 Citazioni (Scopus)

Abstract

Motivated by the analysis of the dependence of knee movement patterns during functional tasks on subject-specific covariates, we introduce a distribution-free procedure for testing a functional-on-scalar linear model with fixed effects. The procedure does not only test the global hypothesis on the entire domain but also selects the intervals where statistically significant effects are detected.We prove that the proposed tests are provided with an asymptotic control of the intervalwise error rate, that is, the probability of falsely rejecting any interval of true null hypotheses. The procedure is applied to one-leg hop data from a study on anterior cruciate ligament injury. We compare knee kinematics of three groups of individuals (two injured groups with different treatments and one group of healthy controls), taking individual-specific covariates into account.
Lingua originaleEnglish
pagine (da-a)1036-1061
Numero di pagine26
RivistaScandinavian Journal of Statistics
Volume45
DOI
Stato di pubblicazionePubblicato - 2018

Keywords

  • analysis of covariance, functional data, human movement, intervalwise testing, permutation test

Fingerprint

Entra nei temi di ricerca di 'Nonparametric inference for functional-on-scalar linear models applied to knee kinematic hop data after injury of the anterior cruciate ligament'. Insieme formano una fingerprint unica.

Cita questo