Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids

Alfredo Marzocchi, Alessandro Musesti, Giulio Giuseppe Giusteri

Risultato della ricerca: Contributo in rivistaArticolo in rivista

2 Citazioni (Scopus)

Abstract

We consider the free fall of slender rigid bodies in a viscous incompressible fluid. We show that the dimensional reduction (DR), performed by substituting the slender bodies with one-dimensional rigid objects, together with a hyperviscous regularization (HR) of the Navier--Stokes equation for the three-dimensional fluid lead to a well-posed fluid-structure interaction problem. In contrast to what can be achieved within a classical framework, the hyperviscous term permits a sound definition of the viscous force acting on the one-dimensional immersed body. Those results show that the DR/HR procedure can be effectively employed for the mathematical modeling of the free fall problem in the slender-body limit.
Lingua originaleEnglish
pagine (da-a)2145-2157
Numero di pagine13
RivistaDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B.
Volume19
DOI
Stato di pubblicazionePubblicato - 2014

Keywords

  • Slender-body theory, fluid-structure interaction, hyperviscosity, dimensional reduction

Fingerprint Entra nei temi di ricerca di 'Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids'. Insieme formano una fingerprint unica.

Cita questo