Nonlinear Dirac equation on graphs with localized nonlinearities: Bound states and nonrelativistic limit

William Borrelli, Raffaele Carlone, Lorenzo Tentarelli

Risultato della ricerca: Contributo in rivistaArticolo in rivista

10 Citazioni (Scopus)

Abstract

In this paper we study the nonlinear Dirac (NLD) equation on noncompact metric graphs with localized Kerr nonlinearities, in the case of Kirchhoff-type conditions at the vertices. Precisely, we discuss existence and multiplicity of the bound states (arising as critical points of the NLD action functional) and we prove that, in the L2-subcritical case, they converge to the bound states of the nonlinear Schrodinger equation in the nonrelativistic limit.
Lingua originaleEnglish
pagine (da-a)1046-1081
Numero di pagine36
RivistaSIAM Journal on Mathematical Analysis
Volume51
DOI
Stato di pubblicazionePubblicato - 2019

Keywords

  • Bound states
  • Linking
  • Metric graphs
  • Nonlinear Dirac equations
  • Nonrelativistic limit
  • Variational methods

Fingerprint

Entra nei temi di ricerca di 'Nonlinear Dirac equation on graphs with localized nonlinearities: Bound states and nonrelativistic limit'. Insieme formano una fingerprint unica.

Cita questo