TY - JOUR
T1 - Noncanonical type 2B von Willebrand disease associated with mutations in the VWF D9D3 and D4 domains
AU - Sacco, Monica
AU - Lancellotti, Stefano
AU - Ferrarese, Mattia
AU - Bernardi, Francesco
AU - Pinotti, Mirko
AU - Tardugno, Maira
AU - De Candia, Erica
AU - Di Gennaro, Leonardo
AU - Basso, Maria
AU - Giusti, Betti
AU - Papi, Massimiliano
AU - Perini, Giordano
AU - Castaman, Giancarlo
AU - De Cristofaro, Raimondo
PY - 2020
Y1 - 2020
N2 - We observed a 55-year-old Italian man who presented with mucosal and cutaneous bleeding. Results of his blood analysis showed low levels of von Willebrand factor (VWF) antigen and VWF activity (both VWF ristocetin cofactor and VWF collagen binding), mild thrombocytopenia, increased ristocetin-induced platelet aggregation, and a deficiency of high-molecular-weight multimers, all typical phenotypic hallmarks of type 2B von Willebrand disease (VWD). The analysis of the VWF gene sequence revealed heterozygous in cis mutations: (1) c.2771G.A and (2) c.6532G.T substitutions in the exons 21 and 37, respectively. The first mutation causes the substitution of an Arg residue with a Gln at position 924, in the D9D3 domain. The second mutation causes an Ala to Ser substitution at position 2178 in the D4 domain. The patient's daughter did not present the same fatherly mutations but showed only the heterozygous polymorphic c.3379C.T mutation in exon 25 of the VWF gene causing the p.P1127S substitution, inherited from her mother. The in vitro expression of the heterozygous in cis VWF mutant rVWFWT/rVWF924Q-2178S confirmed and recapitulated the ex vivo VWF findings. Molecular modeling showed that these in cis mutations stabilize a partially stretched and open conformation of the VWF monomer. Transmission electron microscopy and atomic force microscopy showed in the heterozygous recombinant form rVWFWT/rVWF924Q-2178S a stretched conformation, forming strings even under static conditions. Thus, the heterozygous in cis mutations 924Q/2178S promote conformational transitions in the VWF molecule, causing a type 2B-like VWD phenotype, despite the absence of typical mutations in the A1 domain of VWF.
AB - We observed a 55-year-old Italian man who presented with mucosal and cutaneous bleeding. Results of his blood analysis showed low levels of von Willebrand factor (VWF) antigen and VWF activity (both VWF ristocetin cofactor and VWF collagen binding), mild thrombocytopenia, increased ristocetin-induced platelet aggregation, and a deficiency of high-molecular-weight multimers, all typical phenotypic hallmarks of type 2B von Willebrand disease (VWD). The analysis of the VWF gene sequence revealed heterozygous in cis mutations: (1) c.2771G.A and (2) c.6532G.T substitutions in the exons 21 and 37, respectively. The first mutation causes the substitution of an Arg residue with a Gln at position 924, in the D9D3 domain. The second mutation causes an Ala to Ser substitution at position 2178 in the D4 domain. The patient's daughter did not present the same fatherly mutations but showed only the heterozygous polymorphic c.3379C.T mutation in exon 25 of the VWF gene causing the p.P1127S substitution, inherited from her mother. The in vitro expression of the heterozygous in cis VWF mutant rVWFWT/rVWF924Q-2178S confirmed and recapitulated the ex vivo VWF findings. Molecular modeling showed that these in cis mutations stabilize a partially stretched and open conformation of the VWF monomer. Transmission electron microscopy and atomic force microscopy showed in the heterozygous recombinant form rVWFWT/rVWF924Q-2178S a stretched conformation, forming strings even under static conditions. Thus, the heterozygous in cis mutations 924Q/2178S promote conformational transitions in the VWF molecule, causing a type 2B-like VWD phenotype, despite the absence of typical mutations in the A1 domain of VWF.
KW - bleeding disorders
KW - vonWillebrand disease
KW - bleeding disorders
KW - vonWillebrand disease
UR - http://hdl.handle.net/10807/161384
U2 - 10.1182/BLOODADVANCES.2020002334
DO - 10.1182/BLOODADVANCES.2020002334
M3 - Article
SN - 2473-9529
VL - 4
SP - 3405
EP - 3415
JO - Blood advances
JF - Blood advances
ER -