New Upper Bounds for the ABC Index

Alessandra Cornaro, Monica Bianchi, Anna Torriero, José Luis Palacios

Risultato della ricerca: Contributo in rivistaArticolo in rivista

14 Citazioni (Scopus)

Abstract

For a connected undirected graph $G=(V,E)$ with vertex set $\{1, 2, \ldots, n\}$ and degrees $ d_i$, for $1\le i \le n$, we show that\r\n$$ABC(G) \le \sqrt{(n-1)(|E|-R_{-1}(G))},$$\r\nwhere $\displaystyle R_{-1}(G)=\sum_{(i,j)\in E}\frac{1}{d_id_j}$ is the Randi\'c index.\r\nThis bound allows us to obtain some maximal results for the $ABC$ index with elementary proofs and to improve all the upper bounds in [20], as well as some in [17], using lower bounds for $R_{-1}(G)$ found in the literature and some new ones found through the application of majorization.
Lingua originaleEnglish
pagine (da-a)117-130
Numero di pagine14
RivistaMatch
Volume2016
Numero di pubblicazione1
Stato di pubblicazionePubblicato - 2016

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.1600.1600???
  • ???subjectarea.asjc.1700.1706???
  • ???subjectarea.asjc.1700.1703???
  • ???subjectarea.asjc.2600.2604???

Keywords

  • Atom-bond connectivity index
  • Majorization
  • Randic index
  • Schur-convex functions

Fingerprint

Entra nei temi di ricerca di 'New Upper Bounds for the ABC Index'. Insieme formano una fingerprint unica.

Cita questo