TY - JOUR
T1 - n-3 fatty acids induce oxidative modifications in human erythrocytes depending on dose and duration of dietary supplementation.
AU - Palozza, Paola
AU - Sgarlata, E
AU - Luberto, C
AU - Piccioni, Elisabetta
AU - Anti, Marcello
AU - Marra, G
AU - Armelao, F
AU - Franceschelli, P
AU - Bartoli, Gm
PY - 1996
Y1 - 1996
N2 - The present work was performed to study an optimal dose and duration of dietary n-3 polyunsaturated fatty acid (PUFA) supplementation that would not result in harmful modifications of oxidative cell metabolism. Forty healthy subjects were divided into four groups that received 2.5 g/d eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA), 5.1 g EPA + DHA/d, 7.7 g EPA + DHA/d, or placebo. Fatty acid composition, tocopherol status, and susceptibility to lipid peroxidation induced in vitro by 2,2'-azobis-(2-amidinopropane) (AAPH) were evaluated in human red blood cell (RBC) membranes on days 30 and 180. n-3 PUFA treatment increased EPA and DHA concentrations in RBC membranes in a time-dependent manner in all of the n-3 PUFA groups. These modifications occurred with concomitant dose- and time-dependent increases in the membrane unsaturation index. After 30 d of treatment with n-3 PUFAs, alpha-to-copherol significantly increased in RBC membranes of the intermediate- and high-dose groups. Because of the higher concentration of this antioxidant in these groups, the susceptibility of RBC membranes to peroxidation was decreased. However, after 180 d of treatment, alpha-tocopherol decreased to baseline values and AAPH-induced lipid peroxidation increased in a dose-dependent manner. These results show that high doses of dietary n-3 PUFAs, as well as long-time treatments, affect human RBC susceptibility to lipid peroxidation by changes in fatty acid composition and tocopherol content.
AB - The present work was performed to study an optimal dose and duration of dietary n-3 polyunsaturated fatty acid (PUFA) supplementation that would not result in harmful modifications of oxidative cell metabolism. Forty healthy subjects were divided into four groups that received 2.5 g/d eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA), 5.1 g EPA + DHA/d, 7.7 g EPA + DHA/d, or placebo. Fatty acid composition, tocopherol status, and susceptibility to lipid peroxidation induced in vitro by 2,2'-azobis-(2-amidinopropane) (AAPH) were evaluated in human red blood cell (RBC) membranes on days 30 and 180. n-3 PUFA treatment increased EPA and DHA concentrations in RBC membranes in a time-dependent manner in all of the n-3 PUFA groups. These modifications occurred with concomitant dose- and time-dependent increases in the membrane unsaturation index. After 30 d of treatment with n-3 PUFAs, alpha-to-copherol significantly increased in RBC membranes of the intermediate- and high-dose groups. Because of the higher concentration of this antioxidant in these groups, the susceptibility of RBC membranes to peroxidation was decreased. However, after 180 d of treatment, alpha-tocopherol decreased to baseline values and AAPH-induced lipid peroxidation increased in a dose-dependent manner. These results show that high doses of dietary n-3 PUFAs, as well as long-time treatments, affect human RBC susceptibility to lipid peroxidation by changes in fatty acid composition and tocopherol content.
KW - RBC oxidative stress
KW - n-3 fatty acids
KW - RBC oxidative stress
KW - n-3 fatty acids
UR - http://hdl.handle.net/10807/23926
M3 - Article
SN - 1938-3207
SP - 297
EP - 304
JO - THE AMERICAN JOURNAL OF CLINICAL NUTRITION
JF - THE AMERICAN JOURNAL OF CLINICAL NUTRITION
ER -