Multiplicity and concentration results for local and fractional NLS equations with critical growth

Risultato della ricerca: Contributo in rivistaArticolopeer review

Abstract

Goal of this paper is to study the following singularly perturbed nonlinear Schr\"odinger equation \r\n$$ \varepsilon^{2s}(- \Delta)^s v+ V(x) v= f(v), \quad x \in \mathbb{R}^N,$$\r\nwhere $s \in (0,1)$, $N \geq 2$, $V \in C(\mathbb{R}^N,\mathbb{R})$ is a positive potential and $f$ is assumed critical and satisfying general Berestycki-Lions type conditions. \r\nWhen $\eps>0$ is small, we obtain existence and multiplicity of semiclassical solutions, relating the number of solutions to the cup-length of a set of local minima of $V$; in particular we improve the result in \cite{HeZo}.\r\nFurthermore, these solutions are proved to concentrate in the potential well, exhibiting a polynomial decay. \r\nFinally, we prove the previous results also in the limiting local setting $s=1$ and $N\geq 3$, with an exponential decay of the solutions.
Lingua originaleInglese
pagine (da-a)397-424
Numero di pagine28
RivistaAdvances in Differential Equations
Volume26
Numero di pubblicazione9-10
DOI
Stato di pubblicazionePubblicato - 2021

All Science Journal Classification (ASJC) codes

  • Analisi
  • Matematica Applicata

Keywords

  • Critical exponent
  • Cup-length
  • Fractional Laplacian
  • Nonlinear Schrödinger equation
  • Singular perturbation
  • Spike solutions

Fingerprint

Entra nei temi di ricerca di 'Multiplicity and concentration results for local and fractional NLS equations with critical growth'. Insieme formano una fingerprint unica.

Cita questo