Multiplicity and concentration results for local and fractional NLS equations with critical growth

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

Abstract

Goal of this paper is to study the following singularly perturbed nonlinear Schr\"odinger equation $$ \varepsilon^{2s}(- \Delta)^s v+ V(x) v= f(v), \quad x \in \mathbb{R}^N,$$ where $s \in (0,1)$, $N \geq 2$, $V \in C(\mathbb{R}^N,\mathbb{R})$ is a positive potential and $f$ is assumed critical and satisfying general Berestycki-Lions type conditions. When $\eps>0$ is small, we obtain existence and multiplicity of semiclassical solutions, relating the number of solutions to the cup-length of a set of local minima of $V$; in particular we improve the result in \cite{HeZo}. Furthermore, these solutions are proved to concentrate in the potential well, exhibiting a polynomial decay. Finally, we prove the previous results also in the limiting local setting $s=1$ and $N\geq 3$, with an exponential decay of the solutions.
Lingua originaleEnglish
pagine (da-a)397-424
Numero di pagine28
RivistaAdvances in Differential Equations
Volume26
DOI
Stato di pubblicazionePubblicato - 2021

Keywords

  • Nonlinear Schrödinger equation
  • Fractional Laplacian
  • Cup-length
  • Singular perturbation
  • Spike solutions
  • Critical exponent

Fingerprint

Entra nei temi di ricerca di 'Multiplicity and concentration results for local and fractional NLS equations with critical growth'. Insieme formano una fingerprint unica.

Cita questo