Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities

Silvia Cingolani, Marco Gallo, Kazunaga Tanaka

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

Abstract

We prove existence of infinitely many solutions $u \in H^1_r(\mathbb{R}^N)$ for the nonlinear Choquard equation $$ - \Delta u + \mu u =(I_\alpha*F(u)) f(u) \quad \hbox{in}\ \mathbb{R}^N, $$ where $N\geq 3$, $\alpha\in (0,N)$, $I_\alpha(x) := \frac{\Gamma(\frac{N-\alpha}{2})}{\Gamma(\frac{\alpha}{2}) \pi^{N/2} 2^\alpha } \frac{1}{|x|^{N- \alpha}}$, $x \in \mathbb{R}^N \setminus\{0\}$ is the Riesz potential, and $F$ is an almost optimal subcritical nonlinearity, assumed odd or even. We analyze the two cases: $\mu$ is a fixed positive constant or $\mu$ is unknown and the $L^2$-norm of the solution is prescribed, i.e. $\int_{\mathbb{R}^N} |u|^2 =m>0$. Since the presence of the nonlocality prevents to apply the classical approach, introduced by Berestycki and Lions in \cite{BL2}, we implement a new construction of multidimensional odd paths, where some estimates for the Riesz potential play an essential role, and we find a nonlocal counterpart of their multiplicity results. In particular we extend the existence results in \cite{MS2}, due to Moroz and Van Schaftingen.
Lingua originaleEnglish
pagine (da-a)1-34
Numero di pagine34
RivistaCalculus of Variations and Partial Differential Equations
Volume61
DOI
Stato di pubblicazionePubblicato - 2022

Keywords

  • Nonlinear Choquard equation
  • Nonlocal source
  • Riesz potential
  • Even and odd nonlinearities
  • Pohozaev’s identity
  • Radially symmetric solutions
  • Normalized solutions
  • Lagrange multiplier
  • Multidimensional odd paths

Fingerprint

Entra nei temi di ricerca di 'Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities'. Insieme formano una fingerprint unica.

Cita questo