TY - JOUR
T1 - Multiple members of the TNF superfamily contribute to IFN-γ-mediated inhibition of erythropoiesis
AU - De Maria Marchiano, Ruggero
PY - 2005
Y1 - 2005
N2 - IFN-γ inhibits the growth and differentiation of erythroid precursor cells and mediates hemopoietic suppression through mechanisms that are not completely understood. We found that treatment of human erythroid precursor cells with IFN-γ up-regulates the expression of multiple members of the TNF family, including TRAIL and the recently characterized protein TWEAK. TWEAK and its receptor fibroblast growth factor-inducible 14 (Fn14) were expressed by purified erythroblasts at all the stages of maturation. Exposure to recombinant TWEAK or agonist anti-Fn14 Abs was able to inhibit erythroid cell growth and differentiation through caspase activation. Because other members of the TNF family such as TRAIL and CD95 ligand (CD95L) are known to interfere with erythroblast growth and differentiation, we investigated the role of different TNF/TNFR family proteins as potential effectors of IFN-γ in the immature hemopoietic compartment. Treatment of erythroid precursor cells with agents that blocked either TRAIL, CD95L, or TWEAK activity was partially able to revert the effect of IFN-γ on erythroid proliferation and differentiation. However, the simultaneous inhibition of TRAIL, TWEAK, and CD95L resulted in a complete abrogation of IFN-γ inhibitory effects, indicating the requirement of different receptor-mediated signals in IFN-γ-mediated hemopoietic suppression. These results establish a new role for TWEAK and its receptor in normal and IFN-γ-mediated regulation of hematopoiesis and show that the effects of IFN-γ on immature erythroid cells depend on multiple interactions between TNF family members and their receptors. Copyright © 2005 by The American Association of Immunologists, Inc.
AB - IFN-γ inhibits the growth and differentiation of erythroid precursor cells and mediates hemopoietic suppression through mechanisms that are not completely understood. We found that treatment of human erythroid precursor cells with IFN-γ up-regulates the expression of multiple members of the TNF family, including TRAIL and the recently characterized protein TWEAK. TWEAK and its receptor fibroblast growth factor-inducible 14 (Fn14) were expressed by purified erythroblasts at all the stages of maturation. Exposure to recombinant TWEAK or agonist anti-Fn14 Abs was able to inhibit erythroid cell growth and differentiation through caspase activation. Because other members of the TNF family such as TRAIL and CD95 ligand (CD95L) are known to interfere with erythroblast growth and differentiation, we investigated the role of different TNF/TNFR family proteins as potential effectors of IFN-γ in the immature hemopoietic compartment. Treatment of erythroid precursor cells with agents that blocked either TRAIL, CD95L, or TWEAK activity was partially able to revert the effect of IFN-γ on erythroid proliferation and differentiation. However, the simultaneous inhibition of TRAIL, TWEAK, and CD95L resulted in a complete abrogation of IFN-γ inhibitory effects, indicating the requirement of different receptor-mediated signals in IFN-γ-mediated hemopoietic suppression. These results establish a new role for TWEAK and its receptor in normal and IFN-γ-mediated regulation of hematopoiesis and show that the effects of IFN-γ on immature erythroid cells depend on multiple interactions between TNF family members and their receptors. Copyright © 2005 by The American Association of Immunologists, Inc.
KW - Immunology
KW - Immunology
UR - http://hdl.handle.net/10807/113797
U2 - 10.4049/jimmunol.175.3.1464
DO - 10.4049/jimmunol.175.3.1464
M3 - Article
SN - 0022-1767
VL - 175
SP - 1464
EP - 1472
JO - Journal of Immunology
JF - Journal of Immunology
ER -