Monitoring Tools in Robust CWM for the Analysis of Crime Data

Andrea Cappozzo, LA Garcia-Escudero, F Greselin, A Mayo-Iscar

Risultato della ricerca: Contributo in libroCapitolo

Abstract

Robust inference for the Cluster Weighted Model requires the specification of a few hyper-parameters. Their role is crucial for increasing the quality of the estimators, while arbitrary decisions about their value could severely hamper inferential results. To guide the user in the delicate choice of such parameters, a monitoring approach has been introduced in the recent literature, yielding an adaptive method. The approach is here exemplified, via the analysis of a dataset on the effect of punishment regimes on crime rates.
Lingua originaleInglese
Titolo della pubblicazione ospiteBuilding Bridges between Soft and Statistical Methodologies for Data Science
EditoreSpringer
Pagine65-72
Numero di pagine8
Volume1433
ISBN (stampa)978-3-031-15508-6
DOI
Stato di pubblicazionePubblicato - 2023

Keywords

  • Cluster-weighted modeling

Fingerprint

Entra nei temi di ricerca di 'Monitoring Tools in Robust CWM for the Analysis of Crime Data'. Insieme formano una fingerprint unica.

Cita questo