Momentum transforms and Laplacians in fractional spaces

Giuseppe Nardelli, Gianluca Calcagni

Risultato della ricerca: Contributo in rivistaArticolopeer review

13 Citazioni (Scopus)

Abstract

We define an infinite class of unitary transformations between configuration and momentum fractional spaces, thus generalizing the Fourier transform to a special class of fractal geometries. Each transform diagonalizes a unique Laplacian operator. We also introduce a new version of fractional spaces, where coordinates and momenta span the whole real line. In one topological dimension, these results are extended to more general measures.
Lingua originaleInglese
pagine (da-a)1315-1348
Numero di pagine34
RivistaAdvances in Theoretical and Mathematical Physics
Volume2012
DOI
Stato di pubblicazionePubblicato - 2012

Keywords

  • Fractional field theory

Fingerprint

Entra nei temi di ricerca di 'Momentum transforms and Laplacians in fractional spaces'. Insieme formano una fingerprint unica.

Cita questo