Modelling Inter-country Spatial Financial Interaction with Graphical Lasso: An application to Sovereign co-risk Evaluation

Giuseppe Arbia*, Riccardo Bramante, Silvia Facchinetti, Diego Zappa

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

2 Citazioni (Scopus)

Abstract

We propose a model to extract significant risk spatial interactions between countries adopting the Graphical Lasso algorithm, used in graph theory to sort out spurious conditional correlations. In this context, the major issue is the definition of the penalization parameter. We propose a search algorithm aimed at the best separation of the variables (expressed in terms of conditional dependence) given an a priori desired partition. The case study focuses on Credit Default Swap (CDS) returns over the period 2009–2017. The proposed algorithm is used to estimate the spatial systemic risk relationship between Peripheral and Core Countries in the Euro Area.
Lingua originaleEnglish
pagine (da-a)72-79
Numero di pagine8
RivistaRegional Science and Urban Economics
Volume70
DOI
Stato di pubblicazionePubblicato - 2018

Keywords

  • Network dependence
  • Spatial conditional dependence
  • Systemic risk
  • regional financial contagion

Fingerprint

Entra nei temi di ricerca di 'Modelling Inter-country Spatial Financial Interaction with Graphical Lasso: An application to Sovereign co-risk Evaluation'. Insieme formano una fingerprint unica.

Cita questo