Modeling apache hive based applications in big data architectures

Enrico Barbierato, Marco Gribaudo, Mauro Iacono

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

Performance prediction for Big Data applications is a powerful tool supporting designers and administrators in achieving a better exploitation of their computing resources. Big Data architectures are complex, continuously evolving and adaptive, thus a rapid design and verification modeling approach can be fit to the needs. As a result, a minimal semantic gap between models and applications would enable a wider number of designers to directly benefit from the results. The paper presents a multiformalism modeling approach based on a one-to-one mapping of Apache Hive querying primitives to modeling primitives. This approach exploits a combination of proper Big Data specific submodels and Petri nets to enable modeling of conventional application logic.
Lingua originaleEnglish
Titolo della pubblicazione ospiteVALUETOOLS 2013 - 7th International Conference on Performance Evaluation Methodologies and Tools
Pagine30-38
Numero di pagine9
DOI
Stato di pubblicazionePubblicato - 2013
EventoVALUETOOLS 2013 - 7th International Conference on Performance Evaluation Methodologies and Tools - Torino
Durata: 10 dic 201312 dic 2013

Convegno

ConvegnoVALUETOOLS 2013 - 7th International Conference on Performance Evaluation Methodologies and Tools
CittàTorino
Periodo10/12/1312/12/13

Keywords

  • apache, modeling, big data

Fingerprint

Entra nei temi di ricerca di 'Modeling apache hive based applications in big data architectures'. Insieme formano una fingerprint unica.

Cita questo