TY - JOUR
T1 - Model order reduction for deforming domain problems in a time-continuous space-time setting
AU - Key, Fabian
AU - Von Danwitz, Max
AU - Ballarin, Francesco
AU - Rozza, Gianluigi
PY - 2023
Y1 - 2023
N2 - In the context of simulation-based methods, multiple challenges arise, two of which are considered in this work. As a first challenge, problems including time-dependent phenomena with complex domain deformations, potentially even with changes in the domain topology, need to be tackled appropriately. The second challenge arises when computational resources and the time for evaluating the model become critical in so-called many query scenarios for parametric problems. For example, these problems occur in optimization, uncertainty quantification (UQ), or automatic control, and using highly resolved full-order models (FOMs) may become impractical. To address both types of complexity, we present a novel projection-based model order reduction (MOR) approach for deforming domain problems that takes advantage of the time-continuous space-time formulation. We apply it to two examples that are relevant to engineering or biomedical applications and conduct an error and performance analysis. In both cases, we are able to drastically reduce the computational expense for a model evaluation and, at the same time, maintain an adequate accuracy level, each compared to the original time-continuous space-time full-order model (FOM). All in all, this work indicates the effectiveness of the presented MOR approach for deforming domain problems by taking advantage of a time-continuous space-time setting.
AB - In the context of simulation-based methods, multiple challenges arise, two of which are considered in this work. As a first challenge, problems including time-dependent phenomena with complex domain deformations, potentially even with changes in the domain topology, need to be tackled appropriately. The second challenge arises when computational resources and the time for evaluating the model become critical in so-called many query scenarios for parametric problems. For example, these problems occur in optimization, uncertainty quantification (UQ), or automatic control, and using highly resolved full-order models (FOMs) may become impractical. To address both types of complexity, we present a novel projection-based model order reduction (MOR) approach for deforming domain problems that takes advantage of the time-continuous space-time formulation. We apply it to two examples that are relevant to engineering or biomedical applications and conduct an error and performance analysis. In both cases, we are able to drastically reduce the computational expense for a model evaluation and, at the same time, maintain an adequate accuracy level, each compared to the original time-continuous space-time full-order model (FOM). All in all, this work indicates the effectiveness of the presented MOR approach for deforming domain problems by taking advantage of a time-continuous space-time setting.
KW - deforming domain problems
KW - time-continuous space-time approach
KW - model order reduction
KW - finite element method
KW - deforming domain problems
KW - time-continuous space-time approach
KW - model order reduction
KW - finite element method
UR - http://hdl.handle.net/10807/257255
U2 - 10.1002/nme.7342
DO - 10.1002/nme.7342
M3 - Article
SN - 0029-5981
VL - 124
SP - 5125
EP - 5150
JO - International Journal for Numerical Methods in Engineering
JF - International Journal for Numerical Methods in Engineering
ER -