Abstract
This work deals with the classification problem in the case that groups are known and both labeled and unlabeled data are available. The classification rule is derived using Gaussian mixtures where covariance matrices are given according to a multiple testing procedure which asesses a pattern among heteroscedasticity, homometroscedasticity, homotroposcedasticity, and homoscedasticity. The mixture models are then fitted using all available data (labeled and unlabeled) and adopting the EM and the CEM algorithms. The performance of the proposed procedure is evaluated by a simulation study.
Lingua originale | English |
---|---|
Titolo della pubblicazione ospite | Statistical Models for Data Analysis |
Editor | PAOLO GIUDICI, SALVATORE INGRASSIA, MAURIZIO VICHI |
Pagine | 17-26 |
Numero di pagine | 10 |
DOI | |
Stato di pubblicazione | Pubblicato - 2013 |
Keywords
- Discriminant analysis
- Mixtures