Model-Based Classification Via Patterned Covariance Analysis

Risultato della ricerca: Contributo in libroChapter

Abstract

This work deals with the classification problem in the case that groups are known and both labeled and unlabeled data are available. The classification rule is derived using Gaussian mixtures where covariance matrices are given according to a multiple testing procedure which asesses a pattern among heteroscedasticity, homometroscedasticity, homotroposcedasticity, and homoscedasticity. The mixture models are then fitted using all available data (labeled and unlabeled) and adopting the EM and the CEM algorithms. The performance of the proposed procedure is evaluated by a simulation study.
Lingua originaleEnglish
Titolo della pubblicazione ospiteStatistical Models for Data Analysis
EditorPAOLO GIUDICI, SALVATORE INGRASSIA, MAURIZIO VICHI
Pagine17-26
Numero di pagine10
DOI
Stato di pubblicazionePubblicato - 2013

Keywords

  • Discriminant analysis
  • Mixtures

Fingerprint

Entra nei temi di ricerca di 'Model-Based Classification Via Patterned Covariance Analysis'. Insieme formano una fingerprint unica.

Cita questo