Matrix poyinomials and their inversion: the algebraic framework of unit-root econometrics representation theorems

Maria Zoia, Mario Faliva

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

Abstract

In this paper the issue of the inversion of a matrix polynomial about a unit root is tackled by restoring to Laurent expansion. The principal-part matrix coefficients associated with a simple and a second order pole are properly characterized and closed-form expressions are derived by virtue of a recent result on partitioned inversion (Faliva and Zoia, 2002). This eventually sheds on the analytical foundation of unit-root econometrics which in turn paves the way to an elegant unified representation theorem for (co)integrated processes up to the second order.
Titolo tradotto del contributo[Autom. eng. transl.] Matrix poyinomials and their inversion: the algebraic framework of unit-root econometrics representation theorems
Lingua originaleItalian
pagine (da-a)187-202
Numero di pagine16
RivistaSTATISTICA
Stato di pubblicazionePubblicato - 2002

Keywords

  • algebraic frame work
  • inversion
  • matrix polynomials

Fingerprint Entra nei temi di ricerca di 'Matrix poyinomials and their inversion: the algebraic framework of unit-root econometrics representation theorems'. Insieme formano una fingerprint unica.

Cita questo