TY - JOUR
T1 - Magnetic BV functions and the Bourgain-Brezis-Mironescu formula
AU - Pinamonti, Andrea
AU - Vecchi, Eugenio
AU - Squassina, Marco
PY - 2019
Y1 - 2019
N2 - We prove a general magnetic Bourgain–Brezis–Mironescu formula which extends the one obtained\r\nin [37] in the Hilbert case setting. In particular, after developing a rather complete theory of magnetic\r\nbounded variation functions, we prove the validity of the formula in this class
AB - We prove a general magnetic Bourgain–Brezis–Mironescu formula which extends the one obtained\r\nin [37] in the Hilbert case setting. In particular, after developing a rather complete theory of magnetic\r\nbounded variation functions, we prove the validity of the formula in this class
KW - Magnetic BV
KW - Magnetic BV
UR - https://publicatt.unicatt.it/handle/10807/132140
UR - https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85032443562&origin=inward
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85032443562&origin=inward
U2 - 10.1515/acv-2017-0019
DO - 10.1515/acv-2017-0019
M3 - Article
SN - 1864-8266
SP - 225
EP - 252
JO - Advances in Calculus of Variations
JF - Advances in Calculus of Variations
IS - 12
ER -