Abstract
The correspondence between right loops (P, +) with the property “(*) ∀a, b ∈ P: a − (a − b) − b” and reflection structures described in [4] is extended to the class of graphs with parallelism (P, ε, ∥). In this connection K-loops correspond with trapezium graphs, i.e. complete graphs with parallelism satisfying two axioms (T1), (T2) (cf. §3). Moreover (P, ε, ∥ +) is a structure loop (i.e. for each a ∈ P the map a +: P → P; x → a + x is an automorphism of the graph with parallelism (P, ε, ∥)) if and only if (P, +) is a K-loop or equivalently if (P, ε, ∥) is a trapezium graph.
Lingua originale | English |
---|---|
pagine (da-a) | 74-80 |
Numero di pagine | 7 |
Rivista | RESULTATE DER MATHEMATIK |
Stato di pubblicazione | Pubblicato - 2002 |
Keywords
- graph
- loop
- reflection structure