Local uniqueness of blow-up solutions for critical Hartree equations in bounded domain

Marco Squassina, Minbo Yang, Shunneng Zhao

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

In this paper we are interested in the following critical Hartree equation {-Δu=(∫Ωu2μ∗(ξ)|x-ξ|μdξ)u2μ∗-1+εu,inΩ,u=0,on∂Ω, where N≥ 4 , 0 < μ≤ 4 , ε> 0 is a small parameter, Ω is a bounded domain in RN , and 2μ∗=2N-μN-2 is the critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. By establishing various versions of local Pohozaev identities and applying blow-up analysis, we first investigate the location of the blow-up points for single bubbling solutions to above the Hartree equation. Next we prove the local uniqueness of the blow-up solutions that concentrates at the non-degenerate critical point of the Robin function for ε small.
Lingua originaleEnglish
pagine (da-a)1-51
Numero di pagine51
RivistaCalculus of Variations and Partial Differential Equations
Volume62
DOI
Stato di pubblicazionePubblicato - 2023

Keywords

  • local uniqueness, blow up

Fingerprint

Entra nei temi di ricerca di 'Local uniqueness of blow-up solutions for critical Hartree equations in bounded domain'. Insieme formano una fingerprint unica.

Cita questo