Local Hypothesis Testing for Functional Data: Extending False Discovery Rate to the Functional Framework

Alessia Pini, Niels Asken Lundtorp Olsen, Simone Vantini

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

A topic which is becoming more and more popular in Functional Data Analysis is local inference, i.e., the continuous statistical testing of a null hypothesis along the domain. This can be seen as an extreme case of the multiple comparison problem. During the talk, we will define and discuss the notion of False Discovery Rate (FDR) in the setting of functional data.We will then introduce a new procedure (i.e., a continuous version of the Benjamini-Hochberg procedure) able to control the FDR over the functional domain, describe its properties in terms of control of the Type-I error probability and of consistency. The proposed method will be applied to satellite measurements of Earth temperature with the aim of identifying the regions of the planet where temperature has significantly increased in the last decades.
Lingua originaleEnglish
Titolo della pubblicazione ospiteSmart Statistics for Smart Applications. Book of short papers SIS 2019
Pagine1004-1007
Numero di pagine4
Stato di pubblicazionePubblicato - 2019
Eventosmart statistics for smart applications SIS 2019 - Milano
Durata: 19 giu 201921 giu 2019

Convegno

Convegnosmart statistics for smart applications SIS 2019
CittàMilano
Periodo19/6/1921/6/19

Keywords

  • functional data, local inference, null hypothesis testing, false discovery rate, Benjamini Hochberg

Fingerprint Entra nei temi di ricerca di 'Local Hypothesis Testing for Functional Data: Extending False Discovery Rate to the Functional Framework'. Insieme formano una fingerprint unica.

Cita questo