Lipschitz Regularity of the Eigenfunctions on Optimal Domains

Dorin Bucur, Dario Cesare Severo Mazzoleni, Aldo Pratelli, Bozhidar Velichkov

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

27 Citazioni (Scopus)

Abstract

We study the optimal sets for spectral functionals depending on the eigenvalues of the Dirichlet-Laplacian, which are bi-Lipschitz with respect to each variable, a prototype being the sum of the first p eigenvalues. We prove the Lipschitz continuity of the eigenfunctions on an optimal set and, as a corollary, we deduce that this optimal set is open. For functionals depending only on a generic subset of the spectrum, as for example the k-th eigenvalue, our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.
Lingua originaleEnglish
pagine (da-a)117-151
Numero di pagine35
RivistaArchive for Rational Mechanics and Analysis
Volume216
DOI
Stato di pubblicazionePubblicato - 2015

Keywords

  • Analysis
  • Dirichlet-Laplacian
  • Eigenvalues
  • Mathematics
  • Shape Optimization

Fingerprint

Entra nei temi di ricerca di 'Lipschitz Regularity of the Eigenfunctions on Optimal Domains'. Insieme formano una fingerprint unica.

Cita questo