Abstract
We study the optimal sets for spectral functionals depending on the eigenvalues of the Dirichlet-Laplacian, which are bi-Lipschitz with respect to each variable, a prototype being the sum of the first p eigenvalues. We prove the Lipschitz continuity of the eigenfunctions on an optimal set and, as a corollary, we deduce that this optimal set is open. For functionals depending only on a generic subset of the spectrum, as for example the k-th eigenvalue, our result proves only the existence of a Lipschitz continuous eigenfunction in correspondence to each of the eigenvalues involved.
Lingua originale | English |
---|---|
pagine (da-a) | 117-151 |
Numero di pagine | 35 |
Rivista | Archive for Rational Mechanics and Analysis |
Volume | 216 |
DOI | |
Stato di pubblicazione | Pubblicato - 2015 |
Keywords
- Analysis
- Dirichlet-Laplacian
- Eigenvalues
- Mathematics
- Shape Optimization