Linking solutions for quasilinear equations at critical growth involving the "1-Laplace" operator

Marco Degiovanni, Paola Magrone

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

18 Citazioni (Scopus)

Abstract

We show that the problem at critical growth, involving the 1-Laplace operator and obtained by relaxation of -\Delta_1 u=\lambda |u|^{-1}u + |u|^{1^*-2} u, admits a nontrivial solution u in BV(\Omega) for any \lambda\geq\lambda_1. Nonstandard linking structures, for the associated functional, are recognized.
Lingua originaleEnglish
pagine (da-a)591-609
Numero di pagine19
RivistaCalculus of Variations and Partial Differential Equations
Volume36
DOI
Stato di pubblicazionePubblicato - 2009

Keywords

  • Critical point theory
  • Differential equations
  • Equazioni differenziali
  • Teoria dei punti critici

Fingerprint Entra nei temi di ricerca di 'Linking solutions for quasilinear equations at critical growth involving the "1-Laplace" operator'. Insieme formano una fingerprint unica.

Cita questo