TY - JOUR
T1 - Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity
AU - Degiovanni, Marco
AU - Lancelotti, Sergio
PY - 2007
Y1 - 2007
N2 - We prove that the quasilinear equation -\Delta_p u=\lambda V |u|^{p-2}u+g(x,u), with g subcritical and p-superlinear at 0 and at infinity, admits a nontrivial weak solution u in W^{1,p}_0(\Omega) for any \lambda in R. A minimax approach, allowing also an estimate of the corresponding critical level, is used.
New linking structures, associated to certain variational eigenvalues of
-\Delta_p u=\lambda V |u|^{p-2}u, are recognized, even in absence of any direct sum decomposition of W^{1,p}_0(\Omega) related to the eigenvalue itself.
AB - We prove that the quasilinear equation -\Delta_p u=\lambda V |u|^{p-2}u+g(x,u), with g subcritical and p-superlinear at 0 and at infinity, admits a nontrivial weak solution u in W^{1,p}_0(\Omega) for any \lambda in R. A minimax approach, allowing also an estimate of the corresponding critical level, is used.
New linking structures, associated to certain variational eigenvalues of
-\Delta_p u=\lambda V |u|^{p-2}u, are recognized, even in absence of any direct sum decomposition of W^{1,p}_0(\Omega) related to the eigenvalue itself.
KW - Critical point theory
KW - Differential equations
KW - Equazioni differenziali
KW - Teoria dei punti critici
KW - Critical point theory
KW - Differential equations
KW - Equazioni differenziali
KW - Teoria dei punti critici
UR - http://hdl.handle.net/10807/3284
UR - http://www.sciencedirect.com/science/journal/02941449
U2 - 10.1016/j.anihpc.2006.06.007
DO - 10.1016/j.anihpc.2006.06.007
M3 - Article
SN - 0294-1449
VL - 24
SP - 907
EP - 919
JO - ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE
JF - ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE
ER -