Let‐7a‐5p, mir‐100‐5p, mir‐101‐3p, and mir‐199a‐3p hyperexpression as potential predictive biomarkers in early breast cancer patients

Paola Fuso, Mariantonietta Di Salvatore, Concetta Santonocito, Donatella Guarino, Chiara Autilio, Antonino Mulè, Damiano Arciuolo, Antonina Rinninella, Flavio Mignone, Matteo Ramundo, Brunella Di Stefano, Armando Orlandi, Ettore Domenico Capoluongo, Nicola Nicolotti, Gianluca Franceschini, Alejandro Martin Sanchez, Giampaolo Tortora, Giovanni Scambia, Carlo Barone, Alessandra Cassano

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

Background: The aim of this study is to identify miRNAs able to predict the outcomes in breast cancer patients after neoadjuvant chemotherapy (NAC). Patients and methods: We retrospec-tively analyzed 24 patients receiving NAC and not reaching pathologic complete response (pCR). miRNAs were analyzed using an Illumina Next‐Generation‐Sequencing (NGS) system. Results: Event‐free survival (EFS) and overall survival (OS) were significantly higher in patients with up-regulation of let‐7a‐5p (EFS p = 0.006; OS p = 0.0001), mirR‐100‐5p (EFS s p = 0.01; OS p = 0.03), miR‐ 101‐3p (EFS p = 0.05; OS p = 0.01), and miR‐199a‐3p (EFS p = 0.02; OS p = 0.01) in post‐NAC samples, independently from breast cancer subtypes. At multivariate analysis, only let‐7a‐5p was significantly associated with EFS (p = 0.009) and OS (p = 0.0008). Conclusion: Up‐regulation of the above miRNAs could represent biomarkers in breast cancer.
Lingua originaleEnglish
pagine (da-a)1-17
Numero di pagine17
RivistaJournal of Personalized Medicine
Volume11
DOI
Stato di pubblicazionePubblicato - 2021

Keywords

  • Breast cancer treatment
  • Chemotherapy
  • Integrated ther-apies
  • MiRNAs
  • Next‐generation‐sequencing
  • Personalized medicine
  • Precision medicine
  • Subtypes breast cancer
  • Target therapy

Fingerprint

Entra nei temi di ricerca di 'Let‐7a‐5p, mir‐100‐5p, mir‐101‐3p, and mir‐199a‐3p hyperexpression as potential predictive biomarkers in early breast cancer patients'. Insieme formano una fingerprint unica.

Cita questo