Learning from Multiple Annotators: An Ensemble Model-Based Classification Approach

Risultato della ricerca: Contributo in libroContributo a conferenza

Abstract

Supervised learning with multiple sets of noisy labels\r\npresents a complex challenge, arising when several annotators are\r\nrequired to manually label the same training samples, potentially resulting\r\nin inconsistencies in class assignments compared to the ground truth.\r\nTo efficiently learn a classifier in this context, an ensemble approach is\r\ndeveloped by leveraging model-based discriminant analysis trained individually\r\non distinct sets of noisy labels. Several strategies are proposed\r\nto combine the base learners, extending solutions proposed in the literature\r\nfor the binary classification setting to the multi-class framework.\r\nAn application involving the identification of gastrointestinal lesions from\r\ncolonoscopic videos, revised by seven clinicians, demonstrates the applicability\r\nof our proposal.
Lingua originaleInglese
Titolo della pubblicazione ospiteMethodological and Applied Statistics and Demography II
EditoreSpringer
Pagine85-89
Numero di pagine5
ISBN (stampa)9783031643491
DOI
Stato di pubblicazionePubblicato - 2024

Keywords

  • Ensemble models
  • Label Noise
  • Model-based classification
  • Multiple Labels

Fingerprint

Entra nei temi di ricerca di 'Learning from Multiple Annotators: An Ensemble Model-Based Classification Approach'. Insieme formano una fingerprint unica.

Cita questo