Abstract
In this paper we classify the isomorphism classes of four dimensional nilpotent associative algebras over a field F, studying regular subgroups of the affine group AGL4(F). In particular we provide explicit representatives for such classes when F is a finite field, the real field R or an algebraically closed field.
Lingua originale | English |
---|---|
pagine (da-a) | 132-160 |
Numero di pagine | 29 |
Rivista | Linear Algebra and Its Applications |
DOI | |
Stato di pubblicazione | Pubblicato - 2017 |
Keywords
- Algebra and Number Theory
- Congruent matrices
- Discrete Mathematics and Combinatorics
- Finite field
- Geometry and Topology
- Nilpotent algebra
- Numerical Analysis
- Regular subgroup