Abstract
A complex irreducible character of a finite group G is said to be p-constant, for some prime p dividing the order of G, if it takes constant value at the set of p-singular elements of G. In this paper we classify irreducible p-constant characters for finite reflection groups, nilpotent groups and complete monomial groups. We also propose some conjectures about the structure of the groups admitting such characters.
Lingua originale | English |
---|---|
pagine (da-a) | 911-923 |
Numero di pagine | 13 |
Rivista | Journal of Group Theory |
Volume | 20 |
DOI | |
Stato di pubblicazione | Pubblicato - 2017 |
Keywords
- Characters