Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against β-amyloid-induced alterations in red blood cells.

Cristiana Carelli Alinovi, Silvana Ficarra, Anna Maria Russo, Elena Giunta, Davide Barreca, Antonio Galtieri, Francesco Misiti, Ester Tellone

Risultato della ricerca: Contributo in rivistaArticolo in rivista

19 Citazioni (Scopus)

Abstract

It is well known the role of oxidative stress in the pathophysiology of Alzheimer's disease (AD) and of other neurodegenerative pathologies. We have previously documented that Amyloid beta peptide (1-42) (Abeta) dependent-oxidative modifications affect red blood cell (RBC) morphology and function. Experimental studies show that caffeine (CF) consumption is inversely correlated with AD. In this study, we investigated the role played by RBC in the protective mechanism elicited by CF against Abeta mediated toxicity. PS exposure levels by FACS analysis, as well as protein band 3 functionality analysis, indicated that CF at 100 μM protected against Abeta-mediated membrane alterations, which are known to occur in AD. Moreover, CF counteracts inhibition of ATP release from RBC by Abeta, restoring its ability to modulate vasodilation. Concurrently, analysis of protein kinase C (PKC) and caspase 3 activities, responsible for cytoskeleton alterations, revealed that unlike to caspase 3, PKCα activation induced by Abeta was fully abolished by CF through a mechanism involving Acetylcholinesterase (AChE), located on external face of RBC plasma membrane. These results provide support for the hypothesis concerning the protective role of CF in AD patients could include also a peripheral mechanism involving RBC.
Lingua originaleEnglish
pagine (da-a)52-59
Numero di pagine8
RivistaBIOCHIMIE
DOI
Stato di pubblicazionePubblicato - 2016

Keywords

  • AChE
  • Alzheimer
  • Amyloid beta peptide
  • Caspase 3
  • Metabolism
  • PKC
  • Red blood cell

Fingerprint Entra nei temi di ricerca di 'Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against β-amyloid-induced alterations in red blood cells.'. Insieme formano una fingerprint unica.

Cita questo