Interval-wise testing for functional data

Alessia Pini, A. Pini, S. Vantini

Risultato della ricerca: Contributo in rivistaArticolo in rivista

18 Citazioni (Scopus)

Abstract

In the framework of null hypothesis significance testing for functional data, we propose a procedure able to select intervals of the domain imputable for the rejection of a null hypothesis. An unadjusted p-value function and an adjusted one are the output of the procedure, namely interval-wise testing. Depending on the sort and level α of type-I error control, significant intervals can be selected by thresholding the two p-value functions at level α. We prove that the unadjusted (adjusted) p-value function point-wise (interval-wise) controls the probability of type-I error and it is point-wise (interval-wise) consistent. To enlighten the gain in terms of interpretation of the phenomenon under study, we applied the interval-wise testing to the analysis of a benchmark functional data set, i.e. Canadian daily temperatures. The new procedure provides insights that current state-of-the-art procedures do not, supporting similar advantages in the analysis of functional data with less prior knowledge.
Lingua originaleEnglish
pagine (da-a)407-424
Numero di pagine18
RivistaJournal of Nonparametric Statistics
Volume29
DOI
Stato di pubblicazionePubblicato - 2017

Keywords

  • Inference
  • Statistics and Probability
  • Statistics, Probability and Uncertainty
  • canadian temperatures
  • domain selection
  • functional data

Fingerprint Entra nei temi di ricerca di 'Interval-wise testing for functional data'. Insieme formano una fingerprint unica.

Cita questo