Abstract
Cognitive impairment (CI) is a disabling concomitant of multiple sclerosis (MS) with a complex and controversial pathogenesis. The cytokine interleukin-17A (IL-17A) is involved in the immune pathogenesis of MS, but its possible effects on synaptic function and cognition are still largely unexplored. In this study, we show that the IL-17A receptor (IL-17RA) is highly expressed by hippocampal neurons in the CA1 area and that exposure to IL-17A dose-dependently disrupts hippocampal long-term potentiation (LTP) through the activation of its receptor and p38 mitogen-activated protein kinase (MAPK). During experimental autoimmune encephalomyelitis (EAE), IL-17A overexpression is paralleled by hippocampal LTP dysfunction. An in vivo behavioral analysis shows that visuo-spatial learning abilities are preserved when EAE is induced in mice lacking IL 17A. Overall, this study suggests a key role for the IL-17 axis in the neuro-immune cross-talk occurring in the hippocampal CA1 area and its potential involvement in synaptic dysfunction and MS-related CI.
Lingua originale | English |
---|---|
pagine (da-a) | N/A-N/A |
Rivista | Cell Reports |
Volume | 37 |
DOI | |
Stato di pubblicazione | Pubblicato - 2021 |
Keywords
- cognitive impairment
- experimental autoimmune encephalomyelitis
- hippocampus
- inflammation
- interleukin-17
- multiple sclerosis
- neuroimmunology
- synaptic plasticity