TY - JOUR
T1 - Interface estimates for the fully anisotropic Allen-Cahn equation and anisotropic mean curvature flow
AU - Elliott, Charles M.
AU - Paolini, Maurizio
AU - Schätzle, Reiner
PY - 1996
Y1 - 1996
N2 - In this paper, we prove that solutions of the anisotropic
Allen-Cahn equation in double-obstacle form with kinetic term
\begin{displaymath}
\varepsilon \beta(\nabla \varphi) \partial_t \varphi -
\varepsilon \nabla A'(\nabla \varphi) -
\frac{1}{\varepsilon} \varphi
= \frac{\pi}{4} u \quad \mbox{ in } [|\varphi| < 1],
\end{displaymath}
where $\ A\ $ is a convex function, homogeneous of degree two,
and $\ \beta\ $ depends only on the direction of $\ \nabla \varphi\ $,
converge to an anisotropic mean-curvature flow
\begin{displaymath}
\beta(N) V_N = - \mbox{tr}(B(N) D^2 B(N) R) - B(N) u.
\end{displaymath}
Here $\ V_N \mbox{ and } R\ $ respectively denote the normal
velocity and
the second fundamental form of the interface, and $\ B := \sqrt{2A}\ $.
We prove this in the case when the above flow admits a smooth
solution, and we establish that the Hausdorff-distance
between the zero-level set of $\ \varphi\ $ and the interface
of the flow is of order $\ O(\varepsilon^2)\ $.
AB - In this paper, we prove that solutions of the anisotropic
Allen-Cahn equation in double-obstacle form with kinetic term
\begin{displaymath}
\varepsilon \beta(\nabla \varphi) \partial_t \varphi -
\varepsilon \nabla A'(\nabla \varphi) -
\frac{1}{\varepsilon} \varphi
= \frac{\pi}{4} u \quad \mbox{ in } [|\varphi| < 1],
\end{displaymath}
where $\ A\ $ is a convex function, homogeneous of degree two,
and $\ \beta\ $ depends only on the direction of $\ \nabla \varphi\ $,
converge to an anisotropic mean-curvature flow
\begin{displaymath}
\beta(N) V_N = - \mbox{tr}(B(N) D^2 B(N) R) - B(N) u.
\end{displaymath}
Here $\ V_N \mbox{ and } R\ $ respectively denote the normal
velocity and
the second fundamental form of the interface, and $\ B := \sqrt{2A}\ $.
We prove this in the case when the above flow admits a smooth
solution, and we establish that the Hausdorff-distance
between the zero-level set of $\ \varphi\ $ and the interface
of the flow is of order $\ O(\varepsilon^2)\ $.
KW - anisotropic allen-cahn equation
KW - anisotropic mean curvature flow
KW - double obstacle
KW - anisotropic allen-cahn equation
KW - anisotropic mean curvature flow
KW - double obstacle
UR - http://hdl.handle.net/10807/21414
U2 - 10.1142/S0218202596000456
DO - 10.1142/S0218202596000456
M3 - Article
SN - 0218-2025
SP - 1103
EP - 1118
JO - Mathematical Models and Methods in Applied Sciences
JF - Mathematical Models and Methods in Applied Sciences
ER -