Interacting generalized Friedman's urn systems

Giacomo Aletti, Andrea Ghiglietti*

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

6 Citazioni (Scopus)


We consider systems of interacting Generalized Friedman's Urns (GFUs) having irreducible mean replacement matrices. The interaction is modeled through the probability to sample the colors from each urn, that is defined as convex combination of the urn proportions in the system. From the weights of these combinations we individuate subsystems of urns evolving with different behaviors. We provide a complete description of the asymptotic properties of urn proportions in each subsystem by establishing limiting proportions, convergence rates and Central Limit Theorems. The main proofs are based on a detailed eigenanalysis and stochastic approximation techniques.
Lingua originaleEnglish
pagine (da-a)2650-2678
Numero di pagine29
RivistaStochastic Processes and their Applications
Stato di pubblicazionePubblicato - 2017
Pubblicato esternamente


  • Central Limit Theorems
  • Interacting systems
  • Stochastic approximation
  • Strong consistency
  • Urn models


Entra nei temi di ricerca di 'Interacting generalized Friedman's urn systems'. Insieme formano una fingerprint unica.

Cita questo