TY - JOUR
T1 - Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth
AU - Sighel, Denise
AU - Notarangelo, Michela
AU - Aibara, Shintaro
AU - Re, Angela
AU - Ricci, Gianluca
AU - Ricci, Giuseppe
AU - Guida, Marianna
AU - Soldano, Alessia
AU - Adami, Valentina
AU - Ambrosini, Chiara
AU - Broso, Francesca
AU - Rosatti, Emanuele Filiberto
AU - Longhi, Sara
AU - Buccarelli, Mariachiara
AU - D'Alessandris, Quintino Giorgio
AU - Giannetti, Stefano
AU - Pacioni, Simone
AU - Ricci-Vitiani, Lucia
AU - Rorbach, Joanna
AU - Pallini, Roberto
AU - Roulland, Sandrine
AU - Amunts, Alexey
AU - Mancini, Ines
AU - Modelska, Angelika
AU - Quattrone, Alessandro
PY - 2021
Y1 - 2021
N2 - Glioblastoma stem cells (GSCs) resist current glioblastoma (GBM) therapies. GSCs rely highly on oxidative phosphorylation (OXPHOS), whose function requires mitochondrial translation. Here we explore the therapeutic potential of targeting mitochondrial translation and report the results of high-content screening with putative blockers of mitochondrial ribosomes. We identify the bacterial antibiotic quinupristin/dalfopristin (Q/D) as an effective suppressor of GSC growth. Q/D also decreases the clonogenicity of GSCs in vitro, consequently dysregulating the cell cycle and inducing apoptosis. Cryoelectron microscopy (cryo-EM) reveals that Q/D binds to the large mitoribosomal subunit, inhibiting mitochondrial protein synthesis and functionally dysregulating OXPHOS complexes. These data suggest that targeting mitochondrial translation could be explored to therapeutically suppress GSC growth in GBM and that Q/D could potentially be repurposed for cancer treatment.
AB - Glioblastoma stem cells (GSCs) resist current glioblastoma (GBM) therapies. GSCs rely highly on oxidative phosphorylation (OXPHOS), whose function requires mitochondrial translation. Here we explore the therapeutic potential of targeting mitochondrial translation and report the results of high-content screening with putative blockers of mitochondrial ribosomes. We identify the bacterial antibiotic quinupristin/dalfopristin (Q/D) as an effective suppressor of GSC growth. Q/D also decreases the clonogenicity of GSCs in vitro, consequently dysregulating the cell cycle and inducing apoptosis. Cryoelectron microscopy (cryo-EM) reveals that Q/D binds to the large mitoribosomal subunit, inhibiting mitochondrial protein synthesis and functionally dysregulating OXPHOS complexes. These data suggest that targeting mitochondrial translation could be explored to therapeutically suppress GSC growth in GBM and that Q/D could potentially be repurposed for cancer treatment.
KW - OXPHOS
KW - cryo-EM
KW - dalfopristin
KW - drug repurposing
KW - glioblastoma
KW - glioblastoma stem cells
KW - high-content screening
KW - mitochondrial translation
KW - mitoribosome
KW - quinupristin
KW - OXPHOS
KW - cryo-EM
KW - dalfopristin
KW - drug repurposing
KW - glioblastoma
KW - glioblastoma stem cells
KW - high-content screening
KW - mitochondrial translation
KW - mitoribosome
KW - quinupristin
UR - http://hdl.handle.net/10807/218996
U2 - 10.1016/j.celrep.2021.109024
DO - 10.1016/j.celrep.2021.109024
M3 - Article
SN - 2211-1247
VL - 35
SP - N/A-N/A
JO - Cell Reports
JF - Cell Reports
ER -