Inertia in binary choices: Continuity breaking and big-bang bifurcation points

Laura Gardini, Ugo Merlone, Fabio Tramontana

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

17 Citazioni (Scopus)

Abstract

In several situations the consequences of an actor’s choices are also affected by the actions of other actors. This is one of the aspects which determines the complexity of social systems and make them behave as a whole. Systems characterized by such a trade-off between individual choices and collective behavior are ubiquitous and have been studied extensively in different fields. Schelling, in his seminal papers (1973, 1978), provided an interesting analysis of binary choice games with externalities. In this work we analyze some aspects of actor decisions. Specifically we shall see what are the consequences of assuming that switching decisions may also depend on how close to each other the payoffs are. By making explicit some of these aspects we are able to analyze the dynamics of the population where the actor decision process is made more explicit and also to characterize several interesting mathematical aspects which contribute to the complexity of the resulting dynamics. As we shall see, several kinds of dynamic behaviors may occur, characterized by cyclic behaviors (attracting cycles of any period may occur), also associated with new kinds of bifurcations, called big-bang bifurcation points, leading to the so-called period increment bifurcation structure or to the period adding bifurcation structure.
Lingua originaleEnglish
pagine (da-a)153-167
Numero di pagine15
RivistaJOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION
Volume80
DOI
Stato di pubblicazionePubblicato - 2011

Keywords

  • Big bang bifurcation
  • Binary choices
  • Border collision bifurcations
  • Piecewise smooth systems
  • Switching systems

Fingerprint

Entra nei temi di ricerca di 'Inertia in binary choices: Continuity breaking and big-bang bifurcation points'. Insieme formano una fingerprint unica.

Cita questo