TY - JOUR
T1 - How to Limit Interdialytic Weight Gain in Patients on Maintenance Hemodialysis: State of the Art and Perspectives
AU - Bossola, Maurizio
AU - Mariani, Ilaria
AU - Strizzi, Camillo Tancredi
AU - Piccinni, Carlo Pasquale
AU - Di Stasio, Enrico
PY - 2025
Y1 - 2025
N2 - Background: Interdialytic weight gain (IDWG), defined as the accumulation of salt and water intake between dialysis sessions, is a critical parameter of fluid management and a marker of adherence to dietary and fluid restrictions in hemodialysis patients. Excessive IDWG has been strongly associated with increased cardiovascular risk, including left ventricular hypertrophy, cardiac dysfunction, and cerebrovascular complications. Additionally, it necessitates more aggressive ultrafiltration, potentially compromising hemodynamic stability, impairing quality of life, and escalating healthcare costs. Despite international guidelines recommending an IDWG target of <4–4.5% of body weight, many patients struggle to achieve this due to barriers in adhering to dietary and fluid restrictions. This review explores the current state-of-the-art strategies to mitigate IDWG and evaluates emerging diagnostic and therapeutic perspectives to improve fluid management in dialysis patients. Methods: A literature search was conducted in PubMed/MEDLINE, Scopus, and Web of Science to identify studies on IDWG in hemodialysis. Keywords and MeSH terms were used to retrieve peer-reviewed articles, observational studies, RCTs, meta-analyses, and systematic reviews. Non-English articles, case reports, and conference abstracts were excluded. Study selection followed PRISMA guidelines, with independent screening of titles, abstracts, and full texts. Data extraction focused on IDWG definitions, risk factors, clinical outcomes, and management strategies. Due to study heterogeneity, a narrative synthesis was performed. Relevant data were synthesized thematically to evaluate both established strategies and emerging perspectives. Results: The current literature identifies three principal strategies for IDWG control: cognitive–behavioral interventions, dietary sodium restriction, and dialysis prescription adjustments. While educational programs and behavioral counseling improve adherence, their long-term effectiveness remains constrained by patient compliance and logistical challenges. Similarly, low-sodium diets, despite reducing thirst, face barriers to adherence and potential nutritional concerns. Adjustments in dialysate sodium concentration have yielded conflicting results, with concerns regarding hemodynamic instability and intradialytic hypotension. Given these limitations, alternative approaches are emerging. Thirst modulation strategies, including chewing gum to stimulate salivation and acupuncture for autonomic regulation, offer potential benefits in reducing excessive fluid intake. Additionally, technological innovations, such as mobile applications and telemonitoring, enhance self-management by providing real-time feedback on fluid intake. Biofeedback-driven dialysis systems enable dynamic ultrafiltration adjustments, improving fluid removal efficiency while minimizing hemodynamic instability. Artificial intelligence (AI) is advancing predictive analytics by integrating wearable bioimpedance sensors and dialysis data to anticipate fluid overload and refine individualized dialysis prescriptions, driving precision-based volume management. Finally, optimizing dialysis frequency and duration has shown promise in achieving better fluid balance and cardiovascular stability, suggesting that a personalized, multimodal approach is essential for effective IDWG management. Conclusions: Despite decades of research, IDWG remains a persistent challenge in hemodialysis, requiring a multifaceted, patient-centered approach. While traditional interventions provide partial solutions, integrating thirst modulation strategies, real-time monitoring, biofeedback dialysis adjustments, and AI-driven predictive tools represent the next frontier in fluid management. Future research should focus on long-term feasibility, patient adherence, and clinical efficacy, ensuring these innovations translate into tangible improvements in quality of life and cardiovascular health for dialysis patients.
AB - Background: Interdialytic weight gain (IDWG), defined as the accumulation of salt and water intake between dialysis sessions, is a critical parameter of fluid management and a marker of adherence to dietary and fluid restrictions in hemodialysis patients. Excessive IDWG has been strongly associated with increased cardiovascular risk, including left ventricular hypertrophy, cardiac dysfunction, and cerebrovascular complications. Additionally, it necessitates more aggressive ultrafiltration, potentially compromising hemodynamic stability, impairing quality of life, and escalating healthcare costs. Despite international guidelines recommending an IDWG target of <4–4.5% of body weight, many patients struggle to achieve this due to barriers in adhering to dietary and fluid restrictions. This review explores the current state-of-the-art strategies to mitigate IDWG and evaluates emerging diagnostic and therapeutic perspectives to improve fluid management in dialysis patients. Methods: A literature search was conducted in PubMed/MEDLINE, Scopus, and Web of Science to identify studies on IDWG in hemodialysis. Keywords and MeSH terms were used to retrieve peer-reviewed articles, observational studies, RCTs, meta-analyses, and systematic reviews. Non-English articles, case reports, and conference abstracts were excluded. Study selection followed PRISMA guidelines, with independent screening of titles, abstracts, and full texts. Data extraction focused on IDWG definitions, risk factors, clinical outcomes, and management strategies. Due to study heterogeneity, a narrative synthesis was performed. Relevant data were synthesized thematically to evaluate both established strategies and emerging perspectives. Results: The current literature identifies three principal strategies for IDWG control: cognitive–behavioral interventions, dietary sodium restriction, and dialysis prescription adjustments. While educational programs and behavioral counseling improve adherence, their long-term effectiveness remains constrained by patient compliance and logistical challenges. Similarly, low-sodium diets, despite reducing thirst, face barriers to adherence and potential nutritional concerns. Adjustments in dialysate sodium concentration have yielded conflicting results, with concerns regarding hemodynamic instability and intradialytic hypotension. Given these limitations, alternative approaches are emerging. Thirst modulation strategies, including chewing gum to stimulate salivation and acupuncture for autonomic regulation, offer potential benefits in reducing excessive fluid intake. Additionally, technological innovations, such as mobile applications and telemonitoring, enhance self-management by providing real-time feedback on fluid intake. Biofeedback-driven dialysis systems enable dynamic ultrafiltration adjustments, improving fluid removal efficiency while minimizing hemodynamic instability. Artificial intelligence (AI) is advancing predictive analytics by integrating wearable bioimpedance sensors and dialysis data to anticipate fluid overload and refine individualized dialysis prescriptions, driving precision-based volume management. Finally, optimizing dialysis frequency and duration has shown promise in achieving better fluid balance and cardiovascular stability, suggesting that a personalized, multimodal approach is essential for effective IDWG management. Conclusions: Despite decades of research, IDWG remains a persistent challenge in hemodialysis, requiring a multifaceted, patient-centered approach. While traditional interventions provide partial solutions, integrating thirst modulation strategies, real-time monitoring, biofeedback dialysis adjustments, and AI-driven predictive tools represent the next frontier in fluid management. Future research should focus on long-term feasibility, patient adherence, and clinical efficacy, ensuring these innovations translate into tangible improvements in quality of life and cardiovascular health for dialysis patients.
KW - digital health
KW - fluid management
KW - hemodialysis
KW - interdialytic weight gain
KW - patient adherence
KW - precision medicine
KW - thirst modulation
KW - ultrafitration
KW - digital health
KW - fluid management
KW - hemodialysis
KW - interdialytic weight gain
KW - patient adherence
KW - precision medicine
KW - thirst modulation
KW - ultrafitration
UR - https://publicatt.unicatt.it/handle/10807/313560
UR - https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=105001272610&origin=inward
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105001272610&origin=inward
U2 - 10.3390/jcm14061846
DO - 10.3390/jcm14061846
M3 - Article
SN - 2077-0383
VL - 14
SP - 1846
EP - 1862
JO - Journal of Clinical Medicine
JF - Journal of Clinical Medicine
IS - 6
ER -