HIV-1 fitness landscape models for indinavir treatment pressure using observed evolution in longitudinal sequence data are predictive for treatment failure

Raphael Z. Sangeda, Kristof Theys, Gertjan Beheydt, Soo-Yon Rhee, Koen Deforche, Jurgen Vercauteren, Pieter Libin, Stijn Imbrechts, Zehava Grossman, Ricardo J. Camacho, Kristel Van Laethem, Alejandro Pironti, Maurizio Zazzi, Anders Sönnerborg, Francesca Incardona, Andrea De Luca, Carlo Torti, Lidia Ruiz, David A.M.C. Van De Vijver, Robert W. ShaferBianca Bruzzone, Eric Van Wijngaerden, Anne-Mieke Vandamme

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

3 Citazioni (Scopus)

Abstract

We previously modeled the in vivo evolution of human immunodeficiency virus-1 (HIV-1) under drug selective pressure from cross-sectional viral sequences. These fitness landscapes (FLs) were made by using first a Bayesian network (BN) to map epistatic substitutions, followed by scaling the fitness landscape based on an HIV evolution simulator trying to evolve the sequences from treatment naïve patients into sequences from patients failing treatment. In this study, we compared four FLs trained with different sequence populations. Epistatic interactions were learned from three different cross-sectional BNs, trained with sequence from patients experienced with indinavir (BNT), all protease inhibitors (PIs) (BNP) or all PI except indinavir (BND). Scaling the fitness landscape was done using cross-sectional data from drug naïve and indinavir experienced patients (Fcross using BNT) and using longitudinal sequences from patients failing indinavir (FlongT using BNT, FlongP using BNP, FlongD using BND). Evaluation to predict the failing sequence and therapy outcome was performed on independent sequences of patients on indinavir. Parameters included estimated fitness (LogF), the number of generations (GF) or mutations (MF) to reach the fitness threshold (average fitness when a major resistance mutation appeared), the number of generations (GR) or mutations (MR) to reach a major resistance mutation and compared to genotypic susceptibility score (GSS) from Rega and HIVdb algorithms. In pairwise FL comparisons we found significant correlation between fitness values for individual sequences, and this correlation improved after correcting for the subtype. Furthermore, FLs could predict the failing sequence under indinavir-containing combinations. At 12 and 48 weeks, all parameters from all FLs and indinavir GSS (both for Rega and HIVdb) were predictive of therapy outcome, except MR for FlongT and FlongP. The fitness landscapes have similar predictive power for treatment response under indinavir-containing regimen as standard rules-based algorithms, and additionally allow predicting genetic evolution under indinavir selective pressure.
Lingua originaleEnglish
pagine (da-a)349-360
Numero di pagine12
RivistaInfection, Genetics and Evolution
Volume19
DOI
Stato di pubblicazionePubblicato - 2013

Keywords

  • Antiretrovirals
  • Bioinformatics
  • Evolution
  • HIV-1 drug resistance
  • Treatment response

Fingerprint

Entra nei temi di ricerca di 'HIV-1 fitness landscape models for indinavir treatment pressure using observed evolution in longitudinal sequence data are predictive for treatment failure'. Insieme formano una fingerprint unica.

Cita questo