Abstract
A differential geometric approach to Milnor-Massey higher order linking numbers
for generic links is devised, via Chen's theory of iterated path integrals. Massey linking
numbers arise from curvature forms of nilpotent "topological" connections, determined
by the link structure, and interpreted in terms of intersection theory, leading to a fairly
easy computation thereof. A version of the Turaev-Porter theorem expressing equality of
Milnor and Massey linking numbers is also exhibited along the same lines, by computing
suitable flat connection parallel transport operators in two different ways.
Lingua originale | English |
---|---|
pagine (da-a) | 701-723 |
Numero di pagine | 23 |
Rivista | Journal of Knot Theory and its Ramifications |
Volume | 11 |
Stato di pubblicazione | Pubblicato - 2002 |
Keywords
- higher order linking numbers, Chen integrals, nilpotent connections