Higher order linking numbers, curvature and holonomy

Mauro Spera, Vittorio Penna

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

7 Citazioni (Scopus)

Abstract

A differential geometric approach to Milnor-Massey higher order linking numbers for generic links is devised, via Chen's theory of iterated path integrals. Massey linking numbers arise from curvature forms of nilpotent "topological" connections, determined by the link structure, and interpreted in terms of intersection theory, leading to a fairly easy computation thereof. A version of the Turaev-Porter theorem expressing equality of Milnor and Massey linking numbers is also exhibited along the same lines, by computing suitable flat connection parallel transport operators in two different ways.
Lingua originaleEnglish
pagine (da-a)701-723
Numero di pagine23
RivistaJournal of Knot Theory and its Ramifications
Volume11
Stato di pubblicazionePubblicato - 2002

Keywords

  • higher order linking numbers, Chen integrals, nilpotent connections

Fingerprint

Entra nei temi di ricerca di 'Higher order linking numbers, curvature and holonomy'. Insieme formano una fingerprint unica.

Cita questo