Hidden Markov and Semi-Markov Models with Multivariate Leptokurtic-Normal Components for Robust Modeling of Daily Returns Series

Antonello Maruotti, Antonio Punzo, Luca Bagnato*

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolopeer review

9 Citazioni (Scopus)

Abstract

We introduce multivariate models for the analysis of stock market returns. Our models are developed under hidden Markov and semi-Markov settings to describe the temporal evolution of returns, whereas the marginal distribution of returns is described by a mixture of multivariate leptokurtic-normal (LN) distributions. Compared to the normal distribution, the LN has an additional parameter governing excess kurtosis and this allows us a better fit to both the distributional and dynamic properties of daily returns. We outline an expectation maximization algorithm for maximum likelihood estimation which exploits recursions developed within the hidden semi-Markov literature. As an illustration, we provide an example based on the analysis of a bivariate time series of stock market returns.
Lingua originaleInglese
pagine (da-a)91-117
Numero di pagine27
RivistaJournal of Financial Econometrics
Volume17
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - 2019

All Science Journal Classification (ASJC) codes

  • Finanza
  • Economia ed Econometria

Keywords

  • Hidden Markov Models
  • Leptokurtic Normal Distribution

Fingerprint

Entra nei temi di ricerca di 'Hidden Markov and Semi-Markov Models with Multivariate Leptokurtic-Normal Components for Robust Modeling of Daily Returns Series'. Insieme formano una fingerprint unica.

Cita questo