Abstract
We present a Bayesian nonparametric group-dependent mixture model for clustering. This is achieved by building a hierarchical structure, where the discreteness
of the shared base measure is exploited to cluster the data, between and within groups. We study the properties of the group-dependent clustering structure based on
the latent parameters of the model. Furthermore, we obtain the joint distribution of the clustering induced by the hierarchical mixture model and define the complete posterior
characterization of interest. We construct a Gibbs sampler to perform Bayesian inference and measure performances on simulated and a real data.
Lingua originale | English |
---|---|
Titolo della pubblicazione ospite | CLADAG 2021 Book of abstracts and short papers |
Pagine | 304-307 |
Numero di pagine | 4 |
DOI | |
Stato di pubblicazione | Pubblicato - 2021 |
Evento | 13-th Scientific Meeting of Classification and Data Analysis Group - FIRENZE -- ITA Durata: 9 set 2021 → 11 set 2021 |
Convegno
Convegno | 13-th Scientific Meeting of Classification and Data Analysis Group |
---|---|
Città | FIRENZE -- ITA |
Periodo | 9/9/21 → 11/9/21 |
Keywords
- Bayesian analysis
- EPPF
- Gibbs sampling
- clustering